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An asymptotic analysis for the long-time unsteady laminar far wake of a bluff body due 
to a step change in its travelling velocity from U, to U, is presented. For U,  3 0 and 
U, > 0, the laminar wake consists of a new wake of volume flux Q, corresponding to 
the current velocity U,, an old wake of volume flux Q, corresponding to the original 
velocity U,, and a transition zone that connects these two wakes. The transition zone 
acts as a sink (or a source) of volume flux (Q,- Q,) and is moving away from the body 
at speed U,. Streamwise diffusion is negligible in the new and old wakes but a matched 
asymptotic expansion that retains the streamwise diffusion is required to determine the 
vorticity transport in the transition zone. A source of volume flux Q, located near the 
body needs to be superposed on the unsteady wake to form the global flow field around 
the body. The asymptotic predictions for the unsteady wake velocity, unsteady wake 
vorticity, and the global flow field around the body agree well with finite difference 
solutions for flow over a sphere at finite Reynolds numbers. The long-time unsteady 
flow structures due to a sudden stop (U,  = 0) and an impulsive reverse (U ,  U,  < 0) of 
the body are analysed in detail based on the asymptotic solutions for the unsteady 
wakes and the finite difference solutions. The elucidation of the long-time behaviour of 
such unsteady flows provides a framework for understanding the long-time particle 
dynamics at finite Reynolds number. 

1. Introduction 
In a recent paper (Lawrence & Mei 1995, hereinafter referred to as LM), the long- 

time unsteady force on a moving bluff body due to a step change in its velocity from 
U,  to U,  was obtained at finite Reynolds number, Re. The step change in the velocity 
includes a sudden change of velocity from U,( > 0) to U,( > O), an impulsive start from 
U,  = 0 to U,  > 0, a sudden stop from U ,  to U, = 0, and an impulsive reverse from 
U ,  < 0 to U, > 0. It was shown that for the sudden increase (or decrease) and the 
impulsive start, the long-time transient force decays as t P  at finite Reynolds number 
because a sink, whose strength is proportional to the difference in the respective steady 
wake volume fluxes (Q, - Q,), moves away from the body at speed U, along the wake. 
The transient force decays as trl for the impulsive stop and reverse because the body 
is immersed in the wake it previously created and the wake velocity decays as x-' in the 
streamwise (x) direction. These simple asymptotic results compare very well with 
carefully obtained finite difference results for the long-time unsteady force on a sphere. 
The results also agree with the low-Reynolds-number results of Lovalenti & Brady 
(1 993), who used a reciprocal theorem and point-force formulation for the impulsive 
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start, impulsive stop and impulsive reverse. The t P  decay of the transient force at finite 
Reynolds number for the case of sudden change of velocity from U ,  > 0 to U, > 0 is 
also in excellent agreement with the more recent, and more accurate, low-Reynolds- 
number analytical result (Lovalenti & Brady 1995). 

Since the results for the long-time transient force obtained by LM and by Hinch (see 
Lovalenti & Brady 1993) were obtained by very simple arguments based on the gross 
features of the unsteady wake, detailed analyses for the unsteady flow field are thus 
necessary to gain further understanding of particle dynamics at finite Reynolds 
number. In this paper we present a long-time asymptotic analysis for the unsteady 
wake structure behind a bluff body. A global approximation for the entire flow field 
is then obtained based on superposition of linear flow elements. The asymptotic flow 
field is compared with detailed numerical results for flow around a sphere at Reynolds 
numbers up to 60; very good agreement is obtained over the whole flow field apart 
from a small near-wake region where nonlinear interaction is clearly important. The 
details of the flow structure, especially those revealed by the asymptotic analysis, shed 
much light on the nature of the unsteady laminar wake of a bluff body and the details 
of vorticity transport in those unsteady flows. 

We consider a body of characteristic radius a moving in a fluid of kinematic viscosity 
Y and density p toward the left with the centre of the coordinates attached to it. For 
a zero-thickness plate or disk placed normal to the flow, the characteristic dimension 
of the body should be a typical radius or width. The wake may be regarded as the 
region containing the vorticity generated at the surface of the body. This vorticity 
spreads out owing to diffusion as it is swept downstream by the mean flow, so the 
steady wake is parabolic in geometry, as well as mathematically. Since the vorticity is 
zero on the axis and far away from it, the wake may be thought of as forming a ‘pipe’ 
which both confines and conveys a flux towards the body. In a steady flow, this wake 
flux is a constant proportional to the drag on the body. After the body changes its 
velocity from U, to U, at t = 0, the flow field behind the body at large times consists 
of a new wake (0 < x < U, t )  and an old wake (x > U, t )  connected by a transition zone 
of size (vt),’, at x - U, t ,  as shown in figure 1 (a). The new wake is quasi-steady in the 
coordinate frame attached to the body, whereas the old wake is not. The old wake 
would be quasi-steady in a frame moving at speed (U,- U,), so we say that the old 
wake is moving at speed (U,- U,). The old wake is gradually overtaken by the 
transition zone moving at speed U,. The flow in the transition zone is both unsteady 
in time and elliptic in space. The physical significance of the transition zone, when 
viewed far away from it, is a sink whose strength is proportional to the difference in 
the respective steady wake volume fluxes (Q, - Q,). Asymptotic solutions for the flow 
in these three regions of the far wake can be obtained. Matching is accomplished 
between the new wake and the transition zone and between the transition zone and the 
old wake. An analytical approximation for the global flow field is subsequently 
obtained by further superimposing a source of volume flux Q, at x = 0 to maintain the 
global mass balance. The full unsteady flow field is also obtained by solving the 
Navier-Stokes equation using a finite difference method, which is a refinement of that 
used by Mei (1993). Excellent agreement is observed for the wake velocity and the off- 
centreline vorticity between the numerical solution and matched asymptotic solution 
for a sudden increase in velocity (Re, = 40, Re, = 60). 

For an impulsive start (U,  = 0), the asymptotic and numerical solutions for the flow 
field reveal the following simple, large-scale features : a dipole is created at t = 0 when 
the body is impulsively started; the dipole is then stretched out with the source attached 
to the body moving to the left at velocity U, leaving a sink of the same strength at a 
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A source Q, due to sudden stop; a 
sink Q, due to sudden start at r - 0. 

x -  U*t u, - - u2 
Apparent origin 
of the old wake 

FIGURE 1. Principal features of the unsteady wake at large times due to (a)  a step change from U ,  
to U, in the velocity of the body, and (b) a sudden reverse from U, to U, (U, U, < 0) in the velocity 
of the body, both at t = 0. TZ denotes transition zone. 

distance x - U, t behind it; between the source and the sink lies a new wake. The global 
flow field obtained from the simple analytical approximation agrees well with that from 
the numerical solution for the impulsive-start case (at Re, = 40). 

The global flow field due to a sudden stop contains the old steady wake of volume 
flux Q, that travels toward the body and a diffusing source of flux Q, centred on the 
body. The body thus sees a temporally decaying, spatially decelerating flow around it. 
In the impulsive reverse case, the body moves to the right with velocity U,  < 0 for 
t < 0 and then moves to the left with velocity U, > 0 for t > 0. The long-time global flow 
field can be considered to result from two impulsive processes: an impulsive stop of the 
body with velocity changing from U, to 0 at t = 0-; and subsequently an impulsive 
start of the body with velocity changing from 0 to U, to t = Of. Thus, the global flow 
field has the following principal flow elements: (a)  an old wake with its apparent origin 
moving at x - (U,- U,) t ;  (b) a diffusing source of volume flux Q,  at x - U, t ;  (c) a 
new source of volume flux Q, at x - 0;  ( d )  a new wake of flux Q, in 0 < x < U, t ;  and 
(e)  a new sink of volume flux Q, at x - U, t. The first two elements and the last three 
elements are associated, respectively, with the impulsive stop and impulsive start. The 
detailed finite difference solutions for flow over a sphere confirm the analysis of the 
global flow field due to the impulsive stop and reverse of the body. The asymptotic 
results are, however, valid for arbitrary body geometry which does not generate lift. 

The asymptotic analyses for the unsteady far wake due to the sudden change in 
velocity are presented in $92.1-2.3. In $2.4 we extend the asymptotic analysis to the 
flow due to an impulsive stop. The description of the flow due to an impulsive reverse 
is given in $2.5. The finite difference procedure is briefly summarized in $3. Results and 
further discussion of the unsteady flow fields are presented in $4. 



82 R. Mei and C. J. Lawrence 

2. Asymptotic analyses for the unsteady flow fields 
2.1. Basic equations 

For mathematical convenience, we attach the coordinates to the centre of the moving 
bluff body of characteristic radius a and consider a uniform flow past the body. In the 
case of sphere, a is the radius of the sphere. The flow is assumed to be axisymmetric, 
incompressible, and laminar. At this point, we primarily focus on the flow field in the 
far-wake region, x % a. In cylindrical polar coordinates (x ,  r ,  q), the governing 
equations for the velocity u = ue, + ve, = (u, v, 0) are 

(1) 
1 
r u,+v,+-v = 0,  

~t+uu,+vu, = (2) 

vt+Uv,+Vv, = (3) 

where the subscripts t, x ,  and r denote the partial derivatives with respect to the 
corresponding variable. The equations governing the transport of the vorticity 
w = v, - u, and the stream function are 

(4) 

( 5 )  
1 

$ x x + $ r r - - $ , .  r = -rw. 

The boundary conditions for flow past the fixed body are 

(6)  
u = 0 on the body, 
u =  U(t), v = O ,  p = p ,  as x2+r2+-oo. 

Of particular interest is the response of the flow to the velocity variation 

U, for t < 0 
U, for t > t,, 

U(t)  = (7) 

in which U,  and U, are constants, and t ,  is of O(a/U,). Any reasonable transition from 
U, to U, would yield the same asymptotic results at large times. In the numerical 
computation for flow over a sphere, t, is simply taken to be zero. 

Introducing the scales 

to normalize the variables 

u, P-P,, 0, $ 9  k r ) ,  t ,  
the following dimensionless equations are obtained : 

(9) 

(10) 
1 
r u,+u,+-v = 0,  
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U t + U U , + u U ,  = 

u t + U u , + u u ,  = uz.+ur,+-ur--u , 
r r2 

1 
r 

wt+uw,+vw,--vziw = 

The dimensionless boundary conditions are 

u = 0 on the body 

aI2  for t < 0 
1 for t < t: as x 2 + r 2 - + o o  u = O ,  p = O ,  and u = U =  

The dimensionless equation for $ is the same as given by equation (5 ) .  

2.2. Wake region 
We consider a region 'far downstream' of the body, x 9 1, where the wake is weak, 
wide and axisymmetric (cf. Batchelor 1967, p. 349). For convenience, a small 
parameter F is introduced to characterize the 'farness' and we formally define 
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2.2. I .  Leading-order problem 

e < Re', to obtain 
At leading order, e Q 1, we simply drop O(e) and O(s/Re') terms, formally requiring 

(23) 
1 
R 

(24) 

(25) 

(26) 

Zi,+o,+--a = 0, 

Zi ,  + uzi, = zi,, +-u,, 1 "  
R 

n n 1 , I  

n 1 ,  1 ,  &,+U&, = WRR+-WR--W, 

6, + u6, = -PR + VRR +-OR --o R R 2 '  

R R2 
with 

D = O ,  D = O ,  d = O ,  and & = O ,  as X + R 2 + m .  (27) 
It is observed that the equations for Zi and & are decoupled and have a very similar 
structure to the leading order, 0 can be found from the continuity equation, and @ can 
be found from the radial momentum equation. 

2.2.2. Steady-state wake 
By dropping the time-derivative terms in the above, the steady-state equations are 

obtained. For D and 6, the resulting equations are simple convection-diffusion 
equations of parabolic type with constant convective speed and homogeneous 
boundary conditions. Following Schlichting (1979, p. 234) and Batchelor (1967, 
p. 349), the solution for D is 

where X ,  is the apparent origin of the wake and 

Q = Q/va (29 a) 
in which Q is the dimensional wake volume flux that is directly related to the drag on 
the body. If the uniform flow velocity is U,, the drag is then D, = pU,Q,. Using 
D, = 6npvU,a$, for a sphere in which $ accounts for the deviation from the Stokes 
drag law at finite Reynolds number (LM), we obtain 

The vorticity can be simply obtained as 
Q2 = 67~4,. (29 b) 

The radial velocity is obtained from the continuity equation as 

Q RU R2U 
8n (X-Xo)2exp [ -4(X-X0J' 

O(X, R) = -- 

It is also noted that 6(X,  R)  = U&(X, R). Finally, the pressure can be obtained from the 
radial momentum equation. The radial component of the pressure gradient is 

R -  i3R2 RaR R2 
p - (" a 
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because the operator in front of 5 is identical to the operator for 4 (see equations 
(25)-(26)) while 5 = U 6 .  Hence, from the boundary condition at R+ co, 

p ( X ,  R)  = 0. (33) 

The stream function &(X, R)  is obtained by integrating RC(X, R)  with respect to R :  

&(X, R)  = --{I Q -exp[ - R2U I}. 
2n 4(X- X,) (34 a)  

To maintain the global mass balance, there must be a source of dimensionless volume 
flux Q at Xs (near X = 0;  see Batchelor 1967, p. 351) so the global flow field is 
approximated as 

where H(x)  is the Heaviside unit step function taking the values zero for negative 
arguments and unity for positive arguments. There is no physical discontinuity in $ as 
long as X, < 0 and X, is within the body. Since the body is located at x = 0, we would 
expect X,, and X ,  to be zero. In a strict asymptotic sense, this is indeed the case for the 
steady solution. Nevertheless we retain X, and X, because they will be relevant in 
constructing the unsteady solution in the old wake. Furthermore, it is our intention to 
compare the asymptotic solution to a numerical solution, necessarily generated for 
finite values of x and Re’. In that comparison, it is useful to regard X, and X, as O(a) 
adjustable parameters that account in part for higher-order terms neglected in the 
asymptotic analysis. In this regard, as long as X,, and X, are O(c), or equivalently, 
x, = X , / c  is 0(1), it is to be expected that x, may take different values in the velocity 
and vorticity solutions. 

For T < 0, we set U = aI2 in the above to obtain the steady-state wake (or old wake) 
solutions for ~2, 5 and 6. For T > 0, the new steady wake is obtained by setting U = 1 
in the above. These two steady solutions can now be used to construct the unsteady 
wake solution for T - 0(1),  except in the region near x - t or X - T. 

2.2.3. Unsteady wake solutions for  T - O(1) 

defined by 

which results in a/aT+a/aX = a/aY. Hence, (23t(26) become 

We recall that for T > 0, U = 1 and introduce a change of variables (X, T )  i (Y ,  S )  

Y = X ,  S = T - X ,  (35) 

A 1 ,  1 
R R2 GY = wRR+-wR--4. (39) 
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The boundary conditions are 
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2;=0, D = O ,  p = O ,  and G = O  as Y+co or R+m. (40) 
These equations are identical to the steady wake equations with U =  1, and their 
solution is therefore given by (28)-(34) with ( X -  X,) replaced by ( Y -  8). 

Physically, we expect that a new quasi-steady wake has formed behind the body in 
the region 0 < X < T while the old wake is swept away downstream of X - T. The 
transition zone between the new wake and the old wake is swept along with the flow 
at speed U = 1 as sketched in figure 1 (a). Hence, the solution for the new-wave velocity 
and stream function are simply 

for O <  X <  T Q 1  
471: x- x, C(X, R)  = -2- 

and 

where the subscript 2 denotes quantities corresponding to dimensional velocity U,. The 
constant X ,  is the apparent origin of the new wake. The solution given by (41 a) satisfies 
(37) if we set Y = X in (37). 

The old wake was steady when the uniform upstream flow was U = al,; but the 
uniform flow has changed to U = 1. Hence, the old wake is swept downstream at 
dimensionless speed (1 - al,). We expect the steady solutions given by (28)-(34) to 
apply, with X replaced by X-(1 -al,) T. In the coordinates moving with the body, zi 
of the old wake is given by 

} X > T. (42a) a 1 2  R2 
4[X- (1 -a,,) T -  XI] ’ exp j - Q 0112 C(X, R)  = -2 

47~.X-(l-a,,) T - X ,  

and 

a 1 2  R2 I) X >  T. (42 b) 4(X-(l-a1,) T-X , )  ’ 

The solution for 2; is consistent with the unsteady solution 

Q 1  
47L Y-  &(S) 

Zi(S, Y,  R) = -- 

to (37) if we choose 

1.e. 
al,[Y- q ( S ) ]  = X-(l-a,,) T - X l ,  

and 

(43) 

(44) 

(45) 
Hence, the unsteady (old) wake solutions are given by (42a, b). 

2.2.4. Transition zoYte 
We need to join the new and old wake solutions near X =  T ;  if we set 

X = T - T ,  (46) 
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we may determine T, from (41 a )  and (42a) which become 

(from new wake) (47 a> [ -4(T-  R2 T, - X,) 1 u - Q  = -2 1 
4 x T - T , - X z  

" Q  = -1 exp [ - R2 ] (from old wake). (47b) 
~ ~ c c Y . , , T - T , - X ,  4(a12 T -  T, - XI) 

We choose T, such that al,(T, + X,) = T, + X,, i.e. 

T, = (CY.1,X,-~1)/(1 -a,,>: 

then denote q = X,+ T, = ( X z -  XJ/(l -alz)  to obtain 

(48) 

(49 a )  u = Qz exp[- R2 ] (from new wake), 
47~ T-  q 4(T-  Tl )  

" = Q1 exp[- Rz  ] (from old wake), 
4 z T - q  4 (T-  Tl )  (49 b) 

We are interested in the case with Q1 + Q,. Clearly, there is a discontinuity near 
X - T, or more precisely at X =  T-T,. This calls for a transition zone between 
these two wakes. The flow field in the transition zone may be resolved by including 
streamwise diffusion terms in the governing equations. 

2.3. Unsteady solutions in the transition zone 
2.3.1. Re-scaling 

To understand the unsteady transition zone, the full equations (10)-(13) in the wake 
region must be reconsidered. Using a second re-scaling to resolve the transition zone, 

and noting a1aX-t (e/Re')-1'22/a6, a/aT+ c?/aT- (e/R')-lI2 a/a& we obtain the 
following re-scaled equations : 

(52) 
1 
R 

zi,+v,+-v=o, 

(53) 
1 
R zi, + (eRe')liz (zizi, + Vzi,) = zi,, + - zi, + zi,- $, 

(55 )  
1 1 
R R2 

&,+(eRe')1'2(zi&j5+ V&,) = &,,+-&,--&+&F5. 
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The boundary conditions and the matching conditions are 

6 ,  V, P and & + O  as R-tco, (56) 

where 
7 = R/(T-  T)l/' (59) 

and Ql,2 denotes the respective upstream (Q2: c+- co) and downstream (Ql: 6+ co) 
values of Q. We will first solve the leading-order problem for & from (55) and (58). The 
velocity component zi can be obtained from 

which results from the definition for 6 and mass conservation. The stream function $ 
can be obtained by integrating yzi with respect to y;  the velocity component V can be 
obtained by differentiating $. 

At leading order, terms of O((eRe')ll2) are dropped by requiring e 3 Re'-' or more 
directly x B Re' and t B Re' so that (53)-(55) can be simplified. The detailed procedure 
and the solutions for & (or 6 = R&), zi, and $ in the transition zone are given in the 
Appendix. 

The uniformly valid leading-order solution for the laminar far wake, $fw, can be 
easily constructed by uniformly joining the solutions in the new wake ( X  < T-  T,  or 
x < 0; see (A 12) for the definition of x )  given by (41 b), in the old wake ( X  > T-  T, or 
x > 0) given by (42 b), and in the transition zone given by (A 23). Since $'"( x + - co) 
and I++.'"(x + + co) give the common parts on the left- and right-hand sides of the 
transition zone during matching, the far-wake solution for the stream function is 

and 

(61 b) 

In the above, the subscriptfw denotes far wake and superscript TZ denotes transition 
zone. 

2.3.2. Global consideration based on mass conservation 
To obtain a global description of the long-time unsteady flow induced by the sudden 

change in the velocity of the body, we consider a spherical control volume C, centred 
on the body with a radius much larger than t that contains the entire new wake, the 
transition zone, and a part of the old wake. Mass conservation in C, requires that the 
flux entering the old wake and the sink in the transition zone be balanced by the source 
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near the origin x = 0. Although the contribution to the wake velocity from the source 
is of O(x-') and smaller than the O(x-l) velocities of the old and new wakes, this source 
is physically important to ensure the overall mass balance. Hence, for a physically 
realistic description of the flow, the solution for the stream function for the entire flow 
field must include the following contribution from the source near x = 0: 

where x, is the location of the source. The entire flow field can now be analytically 
constructed using $s and the unsteady far-wake solution $fw as follows : 

where -Q1/27c accounts for the contribution of the old wake to $ in the upstream 
region and ensures that $(r = 0, x < 0) = 0, and 

is the stream function of the sink (or source if Re, > Re,) at the transition zone whose 
contribution to the region of x > 0 has been effectively included in $fw by (61). For 
x < 0, the wake solution ceases to apply while the effect of the sink at the small transition 
zone represented by (64) is valid outside the transition zone. 

The corresponding contribution of the source near x = 0 to the velocity field is 

1 -  x-x, A 1 -  r 
22, = -Q, v =-Q 

47c [(x - x J  + r2]3/2' 47c [(x - x,)2 + r 2 ] 3 / 2 '  

Since the source flow is irrotational, its contribution to the vorticity is zero. 

2.4. Unsteady pow due to impulsive stop of the body 
Consider a body moving at a speed U, = 1 from left to right. When it is suddenly 
brought to rest, the wake behind the body will continue to move to the right with the 
wake origin travelling as x - t .  The source associated with the body will, however, stop 
at x = x, near the origin. Since the body at rest does not supply any momentum to the 
surroundings, the flow due to the source will diffuse out and the region around 
x = x, serves as a transition zone to connect the travelling old wake and the source 
flow. 

The wake velocity and vorticity on the left of the body is given by (cf. (42)) 

R2 ] x<o, 471. T- x- x, exp[ -4(T-X-X,) ' 
" Q  1 u = l  

- Q  R w = 1  
8n: (T- X-X,), 

= -exp[- R2 ]] x< 0, 
27c 4( T- x- X,) ' 
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where XI is the apparent origin of the old wake relative to the sphere for T < 0. In the 
transition zone, X = X ,  4 1, the above become 

where 
we have 

Using 

= XI + X ,  a 

* 01 II. = -[1 -exp(-+q2)], 27t 

d 7 = R / ( T -  q)'/'. On the right of th 

2 = 0. 

transition zone, X > 0, 

in lieu of (50) to rescale X ,  noticing that U = 0 in (18)-(21) in the impulsive stop case, 
we again obtain (52)-(55). Using the matching conditions (69)-(72), we found 

erfc (ix) - 1  R R2 
= Q1,,,(T- T , ) 2  exp[ -4(T- qd (74) 

which integrates to 

1 
a7t1l2 

i erfc (ix) exp( - $72) + cos o erf(ia) - - exp ( - +a4]} (75) 

and 
1 -  1 

47t 47c 
TZ - 6 - - Q, [ 1 - exp (- a,~')] erfc (fx) + - Q1 [erf (ix) - cos 8 erf (;a)]. (76) 

For a --f co and x > 0 we have zi + Q1 cos 8/[47t( T- q)] ( l/a2) which describes a source 
flow. Since $'"( x --f - 00) = (Q1/27t) [ 1 - exp ( - $$)] gives the common part on the 
left-hand side of the transition zone during matching with the wake solution given by 
(71), the uniformly valid far-field solution, $, is 

(77 a) 
and 

$=?p x > o .  (77 b)  
A comparison of the asymptotic solution and the finite difference solution of the large- 
scale flow field will be presented in $3.  

2.5. Unsteady$ow due to an impulsive reverse of the body, a12 < 0 
Consideration is now given to the body moving from left to right at a speed IaI2) for 
t < 0. There is an old wake of volume flux Q1 on the left-hand side of the body and the 
wake is moving to the right. When the object is suddenly reversed, it encounters the old 
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wake on the left. For the purpose of understanding the global flow field, the reversing 
process of the body can be conveniently split into two stages without affecting the long- 
time asymptotic feature of the flow: (a)  the body suddenly stops at t = OW; and (b) the 
body then suddenly moves to the left at t = 0’ with a speed 1. The basic elements of 
the flow field associated with these two impulsive processes have been discussed in 
detail in Sg2.3 and 2.4. After the stop, a source of volume flux Ql at time t is located 
at x - t relative to the moving body and diffuses out radially. After the impulsive start, 
there is a new wake with a volume flux Q, moving to the left in 0 < x < t and a sink 
of volume flux Q, located at x - t .  Thus, there is an equivalent net sink of volume flux 
(Q, - Ql) at x - t .  There is also a source of volume flux Q2 attached to the body at 
x - 0. The flow in the upstream region due to the source Q, then encounters the old 
wake that is moving to the right at speed (al2( relative to a fixed reference frame with 
the apparent origin at x - (1 --al2) t .  These principal features of the flow due to 
the impulsive reverse of the body are shown in figure 1 (b). Pedley (1975) studied the 
response of a thermal boundary layer over a finite-length plate to a spatially uniform 
but temporally reversing flow near t = 0. There is a certain similarity in the nature of 
the long-time behaviour of the thermal boundary layer in Pedley’s work and the far- 
wake velocity field in the present case. During the flow reversal, the short-time 
behaviour in the near field is dominated by the diffusion which depends strongly on the 
geometry of the problem and the behaviour of the acceleration. 

Some quantitative estimations of the interaction between the old wakes and a 
moving sphere can be readily obtained. It is noted that for a sphere moving to the left 
at finite Reynolds number, the global flow at a large Y should be dictated by the 
source-wake combination (Batchelor 1967, p. 351) and the upstream velocity is thus, 
at large 1x1, 

where (29a, b) are used for the source volume flux associated with the sphere. If Re, 
is very small, creeping flow is a valid representation of the actual flow within some 
distance from the sphere; and the upstream (x < 0) velocity is then 

At very large distance, us,opurce(x) takes over because the creeping flow solution is no 
longer valid and the source-wake combination is again the dominating feature. We can 
also use the steady-state finite difference (FD) solution, uf,”(x), to represent the actual 
upstream velocity at a given Re; this is especially useful since we do not know the exact 
regions of validity of the various forms of uUp(x) given by (78). 

After the sphere reverses, the velocity due to the old wake at x < 0 is 

to the leading order. When the flow described by uu,(x) is superposed on this old wake, 
the upstream centreline velocity can be estimated as 

u(x) - uUp(x,  Re,) +’ ’4 Ia12‘ for x < 0. 2 (l-a, ,) t-x 
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The upstream stagnation point, xup ,  can thus be predicted by setting u(x)  = 0 in the 
above. To the leading order, (78a, b) give 

In the above, x F : ~ ~ ~  is valid if xup  is large, say for extremely large t. It is interesting to 
note that the stagnation point for very small Re, moves to the left with nearly constant 
speed for some finite time; eventually it slows down with xUp - tl/'. For finite Re, the 
motion of the upstream stagnation point is x u p  - t1I2 except for very small t for which 
(79) may not be valid. 

In the downstream region, the flow field is complicated by the diffusing source near 
x - t. However, when Re, = Re,, the strength of the diffusing source is equal to that 
of the sink in the transition zone; hence their effects are nearly cancelled locally. The 
downstream flow is thus dictated by the new wake and the old wake. For a12 = - 1, the 
downstream stagnation point xdown is xdown - t + x 2  to the leading order where x, is the 
artificial origin of the new wake relative to the sphere. Thus the separation point stays 
near the location where the sphere reverses. 

To recapitulate, the long-time global flow field due to the impulsive reversal of the 
body has the following principal elements that may serve as building blocks for 
understanding more complex flows. (a) There is an old wake with its origin moving at 
x - (1 -a,,) t. The velocity of this old wake is valid for x < t but far away from the 
body. (b) There is a diffusing source at x - t with a volume flux (Ql - Q,). (c) There is 
a new source of volume flux Q2 at x - 0 and a new wake in 0 < x < t. 

3. Finite difference solution 
The foregoing asymptotic analyses for velocity, vorticity and stream function and 

the results presented in LM clearly show that the unsteady wake, including the small 
transition zone, must be resolved to sufficiently capture the strength of the sink and 
therefore the transient force. In an earlier computational work (Mei 1993) no 
particular attention was paid to the resolution in the transition zone; hence the 
transient force was inaccurate at very large time. In fact a slow exponential decay was 
observed for the step change case (U,U, > 0) for all Reynolds numbers as long as the 
computation lasted sufficiently long. The exponential decay is now known to be 
incorrect (LM). Hence a different gridding strategy must be adopted. 

Because we are interested in the long-time ( t  % 1) behaviour of the flow field and the 
drag, and the transition zone is located at x - t % 1, it is computationally very 
demanding to resolve simultaneously the flow field near the sphere on which the 
vorticity is created and the flow field within the transition zone which determines the 
transient force. Using spherical coordinates ( r ,  0) centred on the sphere with 0 = n: 
lying on the centreline of the wake, the equations governing the vorticity and the 
stream function and the boundary conditions are exactly as given in Mei (1993) and 
details are given in that reference. To achieve a better resolution in the transverse 
direction of the wake, the governing equations are written in transformed coordinates 
(&, 6,). A non-uniform stretching in the &direction is introduced: 

0 = n:co tan-' [tl tan (l/co)], 0 < 5, < 1. (82) 

With cg = 0.8, the grid spacing A0 at 8 = 7c is only one tenth of A0 at 8 = 0. For the 
impulsive stop and reverse, no stretching in the &direction is necessary because the t-' 
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behaviour of the transient force is established much earlier than the t-' behaviour; and 
t - 50-75 is sufficient. For the steady-state results given in figure 2(b) for the upstream 
velocity, the stretching in the H-direction is not applied. A very large value of co is taken 
to obtain a uniform grid. In the r-direction, the same stretching as used in Mei (1993) 
is employed ; no particular stretching is applied near the moving transition zone at 
x - t .  Hence, 

r = l+(rE-l){l-c,tan-'[(l-~,)tan(l/c,)]), 0 < 6, < 1, (83) 
in which rE is the size of the spherical domain. The numerical computation is 
performed using nr = 257 grid points in the r-direction, n, = 129 grid points in the 0- 
direction, c, = 0.645, co = 0.8, and rE = 1200. With this arrangement, it turns out that 
the resolution is usually sufficient for t < 300 with a t P  decay for the transient force; 
beyond c - 300, the resolution in the transition zone at x - t is lost and the strength 
of the sink is reduced, possibly due to numerical diffusion associated with large Ar at 
r - 300, which results in a decay faster than tP2  for the transient force. Fortunately, 
t - 300 is sufficient to capture the long-time asymptotic features of the unsteady flow, 
field, as shown in LM. 

The computation is carried out in transformed coordinates (t1, 6,). The second-order 
spatial derivatives are expressed using central difference. The convection term is 
discretized using a second-order upwind scheme in a conservative form (Mei & Plotkin 
1986) in both directions. The time derivative is evaluated using a backward Euler 
scheme which is implicit and first-order accurate in time. The numerical boundary 
condition for the vorticity is evaluated from the stream function on the grid points near 
the wall using a second-order-accurate expression. Double precision is used for all 
computations. The rest of the computational details can be found in Mei (1993). After 
the uniform flow over a stationary sphere is obtained, it is subtracted to yield the 
unsteady flow induced by a moving sphere. The Reynolds number of the flow, Re, is 
defined based on the diameter, Re = 2aU/v. 

4. Comparison of finite difference and asymptotic results 
To verify the accuracy of the numerical solution for flow over the sphere in a large 

spatial region, the steady-state wake velocity obtained from the present computation 
using the refined and stretched grids is compared with the steady wake velocity from 
the analytical solution. It is noted that at steady state the present asymptotic solution 
for the wake velocity is identical to that of Batchelor (1967). Because the asymptotic 
wake solution is valid only in the far wake, there is some arbitrariness in the apparent 
origin, xn, of the wake. By taking the source contribution (see (78a)) into account to 
maintain the global mass balance, the centreline wake velocity can be expressed as 

;$ 3 w  u(x) - --+- 
(x - x,),' x - xn (84) 

The apparent origin may be chosen by requiring no-slip conditions at x = 1, i.e. 
u(x = 1) = - 1). Hence 

3$Re( 1 - xJ2 
2Re(l -x,)'+6$' 

x,= 1- 

It is noted that the contribution due to the source can be made ineffective by taking a 
large - x, ; in this case x, = 1 - :$. Because the near-wake solution is not pursued in 
the present analysis, the apparent origin x, of the wake can be used simply as a 'free' 
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FIGURE 2. (a) Comparison of the numerical solution and asymptotic solution for the steady wake 
centreline velocity for Re = 1, 10, 40 and 100. Open circles: finite difference solutions; solid lines: 
analytical approximation. (b) Comparison of various solutions for the upstram centreline velocity at 
steady state for Re = 0.1, 10 and 40. Solid lines: dashed lines: uzyrnb'; dotted lines: finite 
difference solutions. 

parameter to adjust the analytical solution so that good agreement between the theory 
and the numerical solution can be obtained in the near-wake region. In general, it is 
appropriate to obtain x,, and x, from the steady-state numerical solution. 

Figure 2 (a) shows the steady wake centreline velocities obtained from the numerical 
solution and the analytical approximation given by (84) for Re = 1, 10, 40, and 100. 
From trial and error, it is found that the following artificial origins result in good fits 
for each u(x; Re): x, = -0.99, -0.9, 0, and 0.2 for Re = I ,  10, 40 and 100. There is 
slight disagreement between the finite difference and the asymptotic wake solutions 
near x = o(1) for Re = 1 .  This is entirely caused by our limiting x, to be within the 
sphere. If a large -x, is used, a much better agreement can be obtained for the Re = 1 
case. When the global flow field is considered (see (62)-(63)), however, such a source 
outside the sphere is not preferred. Hence, Ix,I < 1 is imposed. A few diameters away 
from the sphere, excellent agreement is observed for u over two to three decades of x 
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for all four cases. Thus these values for x, can be used in describing the velocity and 
stream function of the unsteady flow. It is noted that if the stretching in the 6-direction 
is not applied, the wake velocity would decay exponentially at very large x for 
Re = 40 and 100, in an otherwise identical grid system, owing to insufficient resolution 
in the transverse direction in the wake at large distance; see (31) for the exponent. 
Hence the stretching in the &direction is necessary in numerous cases considered here. 

Figure 2 (b) compares the upstream centreline velocity based on the finite difference 
solutions at Re = 0.1, 10 and 40 with the corresponding urTping, and uSource u p  . For 
Re = 0.1, 10 and 40, r2uy;ree = 30.474,0.5378, and 0.2240, respectively, as shown by the 
solid lines. The case Re = 0.1 can be considered as in the low-Re regime. It is seen that 
the exact uUp given by the finite difference solution can be represented quite well by 
uCurpeepilzg for r < 10. For I > 40, uS,lrCe takes over. For Re = 10, up,” can be roughly 
approximated by uS,OpUTee for r > 80. For Re = 40, ~ y ; ~ ~ ~  represents uc,” well for r > 100. 
The behaviour of uUp is important in analysing the flow field due to an impulsive 
reversal of the sphere. The comparisons shown in figure 2 suggest that the present finite 
difference solutions are accurate and agree well with known asymptotic limits in both 
the upstream and downstream directions. 

In approximating the wake velocity, the choice of x, is critical to the good agreement 
in the region x - 10 between the analytical and numerical predictions for the wake 
velocity. As seen from (85) ,  x, is strongly influenced by x,. It is noted that the source 
at x = x, does not affect the vorticity field. When the wake vorticity is considered, it 
is natural that x, for the vorticity would be different in order to achieve a good fit with 
the numerical solution. Physically, different values of x,, are taken because the structures 
for the velocity and vorticity in the near wake are not the same. 

For the unsteady flow, the choice of x, (the origin of the new wake) is somewhat 
more important than that of xl (the origin of the old wake) because the old wake is 
already far downstream. In the asymptotic solution, to determines the exact location of 
the transition zone, x = t- t t ,;  but to is left undetermined in the leading-order 
asymptotic solution. Physically the transition zone is associated with the sink. Hence, 
to for the velocity, vorticity, and stream function should be the same. In the detailed 
comparisons to follow between the asymptotic and finite difference solutions, we shall 
determine to based on the best agreement of the basic flow structures between the two 
solutions. Once to and x, are specified, x, is found from (48) as x, = ccl, x, - (1 -a,,) to 
and t ,  = x, + to. The asymptotic solutions are less sensitive to (x,, t,) than to (x2, to).  
It is emphasized that the relation between x,, x, and to given by (48) must be satisfied 
for a smooth velocity in the transition zone. 

Figure 3 (a) compares the asymptotic and numerical solutions for the unsteady wake 
centreline velocity u(x) for the impulsive-start case with Re, = 1 and Re, = 40 at 
t = 40. For Re, = 1, we choose to = 0, x2 = 0 for the vorticity, and x, = -0.99 to give 
x, = 0.084 for u(x). For Re, = 40, to = 2.5, x, = - 5.5 for thevorticity, andx, = 0 so that 
x, = -2.66 for the velocity. The agreement for the centreline velocity in the new-wake 
region (x < t - to) is excellent. The agreement in the transition zone at x - t - to is also 
very good for Re, = 1. For Re, = 40 the asymptotic structure of the transition zone is 
well predicted and the agreement is considered good. For x > t - to ,  there is no old 
wake and the flow is dictated by the sink at the transition zone and the source at 
x - 0. For x 9 t ,  the velocity behaves as ( Q , t / 2 7 ~ ) ( x - t / 2 ) ~ ~  which results from the 
source at x - 0 and the sink at x - t - t o .  The agreement between the asymptotic and 
numerical solutions is excellent for such small values of u(x) over a large range of x. 

It is worth noting that the asymptotic analyses for the far wake described in the 
previous sections are also applicable to flow over bubbles. The major difference 
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FIGURE 3. (a) Comparison of the numerical solution (dotted lines) and matched asymptotic expansion 
(solid lines) for the wake centreline velocity for the impulsively started motion of solid sphere 
(Re, = 1 and 40) and spherical bubble (Re, = 40) at t = 40. The curve for the bubble has been 
shifted downward by one decade for clarity. (b) As (a) but comparing the wake off-centreline vorticity 
( R - - 8  = 0.00592). 

between a solid sphere and a clean bubble is that the shear stress on the bubble surface 
is zero. Thus the flow near the bubble, including the near-wake region, is quite different 
from the solid-sphere case. However, in the far-wake region, since the governing 
mechanism for the vorticity transport is identical, it is expected that the forgoing 
analyses are also valid for flow over the bubble. Figure 3 (a) also shows a comparison 
of the centreline velocity behind the bubble for the impulsive-start case with Re, = 40. 
The agreement between the asymptotic analyses (to = 1, x, = 0; xz -0.85) and the 
finite difference results is as good as for the solid-sphere case. The magnitude of the 
history force on the bubble was addressed in Mei, Klausner & Lawrence (1994). The 
transient force on the bubble in the impulsive-start case at Re = 40 was reported also 
in LM and good agreement between finite difference computation and the asymptotic 
analysis for the transient force was obtained. 
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FIGURE 4. Streamlines around an impulsively started sphere at Re, = 40: (a) based on the finite 
difference solution at t = 15; (b) asymptotic solution at t = 15; (c) based on the finite difference 
solution at t = 60; (d)  asymptotic solution at t = 60. 

Since the vorticity o is identically zero on the centreline of the wake, 0 = IT, we 
choose to compare the asymptotic and the numerical solutions for w / y  ( y  E r sin 0) on 
the first grid line off the wake centreline. Hereinafter (r ,B)  denote the spherical 
coordinates centred on the sphere. Figure 3 (b)  compares the asymptotic and numerical 
solutions for o / y  on the first grid off the wake centreline (IT-6 = 0.00592) for the 
impulsive-start case with Re, = 1 and Re, = 40 at t = 40. The agreement between the 
two solutions is excellent for the new wake at x < t .  The decay of w / y  in the transition 
zone is well predicted for Re, = 1. For Re, = 40, the qualitative agreement, i.e. the 
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FIGURE 5. Vorticity contours of the flow field around an impulsively started sphere at Re, = 40 
based on the finite difference solution. (a) t = 15; (b)  t = 60. 

rapid decay of w / y  in the transition zone is predicted by both solutions. The slightly 
slower decay of the numerical solution may result from the leakage of the vorticity 
through extra numerical diffusion associated with finite grid size and time-step size. 
This extra numerical diffusion is also present when Re, = 1 on the same grid, but the 
physical diffusion appears to dominate. For Re, = 40, the physical diffusion is quite 
small and the extra numerical diffusion smears out the transition zone and transports 
vorticity further downstream. 

Figure 4(a-d) shows the streamlines due to an impulsively started sphere with 
Re, = 40 at t = 15 and t = 60 based on the finite difference solution and the analytical 
approximation given by (63). Bearing in mind that the asymptotic solution formally 
requires t 9 Re’, the agreement between the two solutions is remarkably good. The 
large-scale flow field around the sphere at t = 15 is basically a pair of source and sink 
induced by the impulsive start of the sphere. Close examination also indicates that the 
pair is stretched with the sink located at x - t = 15. As t increases, the flow field 
evolves and the pair is clearly split into a source attached to the sphere and a sink at 
x - t moving to the right. As seen from figure 4(c, d )  for t = 60, a quasi-steady wake 
is clearly established between x = 0 and x - t .  When the steady state is reached, the 
sink has moved to infinity and the flow field surrounding the sphere in practice consists 
of the source (split from the pair) and a wake. Comparing figure 4(a)  with 4(b), it is 
seen that even for t = 15 < Re,/2 the flow field within the wake and the flow induced 
by the sink are well predicted by the asymptotic solution. 

Figure 5(a, b) shows the vorticity contours of the flow field around an impulsively 
started sphere with Re, = 40 based on the finite difference solution at t = 15 and 60. 
While the region of influence on the flow field of the source-sink pair extends far 
beyond x - t ,  the vorticity is confined in the new wake, x < t, since the pair is 
irrotational. The new wake can also be viewed as acting as a ‘vortex pipe’. Fluid is 
pulled in at the transition zone, carried along inside the wake and ejected near the 
body. This flow is both confined and maintained by the vorticity of the wake. 
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FIGURE 6. (a)  Comparison of the numerical solution (dotted lines) and matched asymptotic expansion 
(solid lines) for the wake centreline velocity for sudden increase in the velocity from Re, = 40 to 
Re, = 60 at t = 30, t = 60 and t = 100. The curves for t = 30 and t = 100 have been shifted downward 
and upward by one decade respectively. (b)  As (a) but comparing the wake off-centerline vorticity 
(K-0 = 0.00592). 

Figure 6(a)  shows the unsteady wake centreline velocity u(x) for a sudden change in 
the sphere velocity from Re, = 40 to Re, = 60 at t = 30, 60 and 100. We choose to = 
11.5, x2 = - 3.54 for u(x) and x, = - 7.5 for w / y .  The movement of the transition zone 
near x - t relative to the sphere can be clearly observed. The agreement for u(x) is good 
for both new and old wakes. Without the guidance of the analytical solution, it was 
difficult to discern the transition zone from the numerical solution. The analytical 
solution is thus quite useful in revealing the asymptotic structure of the unsteady wake. 
Figure 6(b)  shows the off-centreline vorticity, w / y ,  at x-0 = 0.00592 based on the two 
solutions for the same case at t = 30, 60 and 100. Excellent agreement is observed. It 
is noted that at x - t = 30, the conditions x % Re' = Re,/2 = 30, t % Re' = 30, which 
are necessary for obtaining the asymptotic solution in the transition zone, are not 
satisfied ; yet the agreement between the asymptotic and numerical solutions in both 
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FIGURE 7. Streamlines around a sphere with a sudden increase in the velocity from Re, = 40 to 
Re, = 60 at t = 50: (a) based on the finite difference solution; (b) analytical approximation. 
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FIGURE 8. Vorticity contours of the flow field around a sphere with a sudden increase in the 
velocity from Re, = 40 to Re, = 60 based on the finite difference solution at t = 50. 

cases is quite satisfactory. The agreement is even better for the case with (Re,, Re,) = 
(10,15) at t = 30, 60 and 100 (not shown here) with the choice of to = 6, x, = - 1.34 
for u(x) and x, = -3.5 for w / y .  

Figure 7(a, b) shows the streamlines for the case with a sudden change in velocity 
from Re, = 40 to Re, = 60 at t = 50 based on the numerical and asymptotic solutions. 
The sink is much weaker than for the impulsive start. As shown in LM, for small Re, 
the strength of the sink is of O(Re2) for a sudden change while it is of O(Re) for the 
impulsive start. The sink at x - t = 50 is difficult to discern from the numerical 
solution; this is consistent with the observation for the wake centreline velocity u(x) in 
which the transition zone was difficult to identify from the numerical solution at first 
glance. However, in figure 7(b),  the asymptotic solution clearly shows that the flow 
field in the far-wake region, x >> 1, consists of a new wake at x < t ,  an old wake at 
x > t ,  and a sink near x N t. Figure 8 shows the vorticity contours of the flow field 
around the sphere with a sudden increase in the velocity from Re, = 40 to Re, = 60 
based on the finite difference solution at t = 50. The change of the slope in the contour 
lines at x - t is visible; the vorticity contours near x - t exhibit concave behaviour. 
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FIGURE 9. (a) Comparison of the numerical solution (dotted lines) and matched asymptotic expansion 
(solid lines) for the wake centreline velocity for a sudden decrease in the velocity from Re, = 40 to 
Re, = 10 at t = 30, t = 60 and t = 100. (b)  As (a) but comparing the wake off-centerline vorticity 
(TC-8 = 0.00592). 

Figure 9(a,  h )  compares the two solutions for a sudden decrease in the velocity from 
Re, = 40 to Re, = 10 at t = 30, 60 and 100. The parameters are to = 8, x2 = - 1.34 for 
u(x) and xg = -3.5 for w / y .  The motion of the transition zone to the right can be 
clearly identified. It is noted that the change in the velocity is quite large, aI2 = 4, in 
this case. The two solutions in the transition zone and the old wake do not agree as well 
as in the previous two cases in which a,, = 5, a relatively mild change. The discrepancy 
in the old wake is mainly caused by a large x, (x, = 18.6) due to the large aI2 for the 
chosen to and x2. 

Figure 10(a-d) shows the flow pattern around the sphere when it is suddenly slowed 
down from Re, = 40 to Re, = 10 based on the finite difference solution and the 
asymptotic solution at t = 20 and 50. Instead of seeing a combination of a source at 
x - 0 and a sink at x - t as in the sudden increase case, we see clearly from both 
solutions a source of dimensionless volume flux Q, at x - 0 and a new source in the 
transition zone, x - t, of volume flux (Q,-Q,). The two sources moving apart 
horizontally as the transition zone continues to move to the right. Figure 11 shows the 
vorticity contours of the flow field around the sphere with a sudden decrease in the 
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FIGURE 10. Streamlines around a sphere with a sudden decrease in the velocity from Re, = 40 to 
Re, = 10: (a) finite difference solution at t = 20; (b) analytical approximation at t = 20; (c) finite 
difference solution at t = 50; (d )  analytical approximation at t = 50. 

velocity from Re, = 40 to Re, = 10 based on the finite difference solution at t = 20 and 
50. Similar to the sudden increase case from Re, = 40 to Re, = 60, the ‘discontinuity’ 
in the contours at the transition zone x - t can be seen for both t = 20 and 50; the 
vorticity contours near x - t are convex for the sudden-decrease case. This corresponds 
to a ‘hole’ in the ‘vortex pipe’ where fluid escapes. 

Figure 12(a, b) compares the flow field around an impulsively stopped sphere based 
on the finite difference solution with that based on the asymptotic solution given by 
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FIGURE 11. Vorticity contours of the flow field around a sphere with a sudden decrease in the 
velocity from Re, = 40 to Re, = 10 based on the finite difference solution. (a) t = 20; (b)  t = 50 
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FIGURE 12. Streamlines of the flow field around an impulsively stopped sphere at Re, = 10 at 
t = 15: (a) finite difference solution; (6) analytical approximation. 

(77) at t = 15 with Re, = 10. Excellent agreement is observed. The sphere originally 
moves from left to right. On the left, it is seen clearly that the old wake moves toward 
the sphere and the stream then spreads out through the diffusing source. On the right 
of the stopped sphere, a source flow is clearly visible. In $2.4, it is pointed out that the 
volume flux of this source at x = 0 is ol and the source is diffusing out. The diffusion 
of the source near the sphere has been observed by comparing the spreading of the 
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FIGURE 13. Upstream centreline velocity due to an impulsively stopped sphere with Re, = 10 
at t = 5 ,  15, 35 and 75. 
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FIGURE 14. Vorticity contours of the flow field around an impulsively stopped sphere with 
Re, = 10 based on the finite difference solution. (a) t = 15; (b) t = 75. 

streamlines from t = 15 to 75 (not shown here). To see the diffusing source clearly, 
figure 13 compares the upstream (x > 0) velocity of the impulsively stopped sphere 
(Re, = 10) at t = 5, 15, 35 and 75 with the idealized source at x = 0, us,opU'ce(x) = 
0.537/x2. For x > 10, the flow is still dominated by the source. Near the sphere, the 
velocity decreases with time as the source diffuses. The spreading of the old wake can 
be better illustrated by examining the unsteady vorticity contours as shown in figure 
14(a, b) for t = 15 and 75. Near the sphere, a new vorticity field is created by the 
incoming wake flow and interacts with the incoming vorticity of the old wake. Since 
the velocity of the passing wake becomes weaker, the vorticity near the sphere 
decreases with time and spreads out through diffusion. Chang & Maxey (1995) 



The flow field due to a body in impulsive motion 105 

-100 0 -100 

50 

I 

-100 0 -100 

50 

-100 0 -100 

FIGURE 15. Streamlines around an impulsively reversed sphere at Re, = Re, = 10 based on the 
finite difference solution. (a) t = 0.5; (b)  t = 20; (c)  t = 40. 

presented the streamlines around the sphere in the near field (1x1 < 9) soon after the 
sphere is brought to rest from R = 10. Their flow pattern at very short time in the near 
field clearly possesses essentially the same features as predicted by our asymptotic 
analysis for the long time and far field: a source within the body and an old wake 
behind the body. 

Figure 15(a-c) shows the flow field around an impulsively reversed sphere with 
Re, = Re, = 10 and al, = - 1 at t = 0.5, 20 and 40. Only numerical solutions are 
presented here, but the asymptotic solutions have been checked and show very 
good agreement. The sphere originally moves from left to right with a wake on the left 
of the sphere; the old wake is still moving toward the right. As discussed in 52.5, the 
physics associated with the impulsive reverse can be understood by splitting the 
impulsive reverse into an impulsive stop at t = 0- and an impulsive start at t = 0'. In 
figure 15(a), it is seen that shortly after the sphere reverses a recirculation zone is 
created very close to it. Subsequently, this region grows and stretches out as shown in 
figure 15 (b, c). A new wake is clearly visible in figure 15(c) for x < t = 40. Unlike the 
impulsive-start case in which a sink of volume flux Q2 is located at x - I, no sign of a 
sink or source at x - t is visible. Instead, the streamlines at t = 20 and 40 indicate that 
only a source at x - 0 is present on a large scale. It is also pointed out in $2.5 that the 
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FIGURE 16. The flow due to the diffusing source at x - t associated with the impulsive 
reverse of the sphere. Re, = Re, = 10, t = 40. 
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FIGURE 17. Vorticity contours of the flow field around an impulsively reversed sphere at 
Re, = Re, = 10 based on the finite difference solution (a) t = 0.5; (b) t = 20; (c) t = 40. 

sink of flux Q2 exactly cancels the effect of the diffusing source of flux Q1 at x - t that 
is left after the stopping process. To verify the above analysis, and especially to confirm 
the presence of the diffusing source Ql, we subtract the flow field caused by the 
impulsive start process with Re,, which consists of a new source Q2 at x = 0, a new 
wake in 0 c x < t - to, and a sink of flux Q, at x = t - to, from the numerically obtained 
flow field. The resulting flow field should mainly contain the old wake and the diffusing 
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FIGURE 18. (a)  Upstream velocity due to an impulsively reversed sphere with Re, = Re, = 10 at 
I = 20 and 40. (b) Downstream velocity due to an impulsively reversed sphere with Re, = Re, = 10 
at t = 0.5, 20 and 40 based on the finite difference solution. 

source at x - t on a large scale, according to the analysis presented in 42.5; the stream 
function of such a flow field is denoted by @ d i f f .  Taking to = 8, x 2  = - 1.34, suing the 
stream function due to the impulsive start similar to (63), @diff is easily obtained. 
Figure 16 shows the contours of @diff at t = 40. A diffusing source is clearly seen at 
x - t - to = 32. To the left of x - t - to, the flow is mainly dominated by the old wake 
except near the sphere. Near the sphere, uS,OpUTCe(x) does not represent the actual u&) 
well and the linear wake analysis breaks down. Nevertheless, the old-wake/source 
combination on a large scale is clearly demonstrated. Figure 17(a-c) shows the 
vorticity contours of the flow field around the impulsively reversed sphere at t = 0.5, 
20 and 40. The interaction of the travelling old wake and the new vorticity field can be 
clearly observed. The convection of the old wake can also be visualized by laying the 
w-contour at t = 20 on top of the w-contour at t = 40 and shifting the w-contour at 
t = 20 to the right by a distance of (1 - a12) (40 - 20) = 40. 

To further understand the complex flow pattern shown in figure 15, we examine the 
upstream and downstream velocities on the centreline. Figure 18 (a) shows the 
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upstream velocity at t = 20 and 40 based on the unsteady finite difference solution and 
the prediction using the steady uz,”(x) and uwake(x) given by (79). Excellent agreement 
is observed for the velocity, and the front stagnation point is accurately captured by 
the prediction for t = 20 and 40. Figure 18(b) shows the downstream velocity at 
t = 0.5,20 and 40 based on the finite difference solution. Also shown is the velocity due 
to an ideal source at x = 0. By comparing it with figure 3(a) ,  it is clear that a new 
wake has formed between x - 1 and x - t. The sink at x N t exactly cancels the 
diffusing source, so that no visible impact is seen. Beyond x - t ,  the ideal source 
uS,OpUTCe(x) clearly dominates. It is also seen that the downstream stagnation point 
moves as xdown - t as discussed earlier. 

5. Conclusions 
The long-time behaviour of the unsteady flow field around a bluff body due to a step 

change in its travelling velocity from a12 to 1 (or in dimensional terms, from U,  to U,) 
has been investigated in detail based on asymptotic analysis and finite difference 
solution. The step change in the dimensionless velocity includes: (i) an impulsive start 
with a12 = 0; (ii) a sudden increase with 0 < a12 < 1 ; (iii) a sudden decrease with 
aI2 > 1 ; (iv) an impulsive stop with a12+ 00 (or U, = 1 and U, = 0); and (v) an impul- 
sive reverse with aI2 < 0. For the first three cases, a matched asymptotic solution is 
obtained to describe quantitatively the unsteady flow structure: a soyrce of volume flux 
Q2 attached to the body, a new quasi-steady wake of volume flux Q, in 0 < x < t ,  an 
old wake of volume flux Q1 in the region x > t ,  a sink of volume flux (Q2-  Q,) at the 
transition zone. For the impulsive stop, the asymptotic analysis for the unsteady flow 
indicates that it mainly consists of an old wake and a diffusing source of volume flux 
Q1 at x = 0. For the impulsive reverse, a12 < 0, a qualitative analysis reveals the 
following basic features: (a)  an old wake in x < t with its apparent origin at x - 
(1 + laA,l) t ;  (b) a diffusing source of volume flux &at x N t ;  (c) a new source of volume 
flux Q, at x N 0, a new wake of volume flux Q2 in 0 < x < t ,  and a new sink of 
volume flux & at x - t (i.e. a net sink of flux Q2-Ql at x N t). The basic unsteady 
flow structures predicted by the analytical approximation agree well with the finite 
difference solutions for all cases. 

In particular, the present study has provided a detailed analysis of the flow fields due 
to the impulsive stop and reverse to elucidate the unusual t-l behaviour of long-time 
transient force experienced by the sphere. The findings of the present study, the results 
of LM, and the analysis of Lovalenti & Brady (1993, 1995) indicate that the long-time 
behaviour of the history force on a particle in a general unsteady environment at finite 
Reynolds number is very complicated and problem dependent. Although in practical 
problems of interest such situations with t-l long-time decay of the transient force are 
rarely encountered, a generally valid expression for such a force at finite Reynolds 
number is very difficult to find. 
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Appendix. Leading-order solution for the transition zone 

equations (53)-(55) can be simplified to 
By dropping terms of O((cRe')1'2) for c 4 Re'-' or more directly x 9 Re' and t % Re', 

1 ,  
R 2iT = ziRR+-uR+iiCC-PC, 

1 ,  1 ,  A 

R R2 GT = GRR+-w--w+wC5. 

Using t = RG = R( VR - zit), (A 3 )  becomes 

with the following matching conditions : 

Seeking a solution in the form of 

(A 4) becomes 
l =m, T)g(<, TI, 

Taking hints from the matching conditions (A 5) ,  the choice 

1 R2 f (R ,  T )  = -- 
87t(T-Q2 

satisfies f R R  - (1 /R),fR -.fT = 0. Hence, we are left to solve 

with 
gT-g<, = 

a 

g =  Q l . 2  as 6 + k m .  

Anticipating self-similarity, the solution may be obtained as 

g = Q1+ i ( Q 2  - QJ erfc ($XI, 
x = </(T-  T2>1'2, 

where T,  is a constant of integration and erfc is the complementary error function with 
erfc (- co) = 2 and erfc (a) = 0. Thus, 
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so that 
R and x are scaled by the same factor (T-  T,)ll2. Using y and x, equation (60) for 
velocity 2i can be expressed as 

In general, T,  could be different from T,, but for convenience, we set T, = 

1 - 1 
T 
-(T2i7)a+zixx - 4n(T- T,)(l - ~ 2 ) e x P ( - ~ ~ 2 ) t Q l + ~ ( Q 2 - Q 1 ) e r f C ( ~ X ) 1 ,  (A 14) 

with 2i = 0 as y --f 00 and the matching conditions given by (57). The solution for zi may 
be partitioned in the form of 

(A 15) 
1 

u = -  Cexp ( -@) @I+ i ( Q 2  - 01) erfc (&)I + u“> 4n( T- T,) 
and the remainder ii satisfies 

with 
u ” = O  as x++w or y-fco. 

Using local spherical coordinates, (x, y) + (a, 8), with x = a cos 8 and 7 = o sin 8, 
(A 16) becomes 

1 (sin 8ii,), = ( Q2 - Ql)  4?c112 u exp ( -+az) cos 8. (A 18) 
1 1 
a2 a2 sin 8 - (a2ii,), + ___ 

Seeking a solution in the form of 

an ordinary differential equation for h(o) results: 

2 2  
u a2 

h”+-h’---h = oexp(-+a2) 

with h = 0 as a+ 00. This equation can be integrated directly; the solution is 

(A 21) h(a) = -exp(-+u2)--n1/2erf(~a). 

It is noted that h(o) - -fa as o + O ,  and that as u+ 00, ii takes the form of a sink of 
strength (Q,- Ql). Substituting (A 19) and (A 21) into (A 25) gives the velocity zi in the 
transition zone : 

4 4 
o o2 

1 - 1  + (Q, - el> cos 8 ( -+a2)]}. (A 22) 

Noting that for fixed 2, cos B = x/c . ,  y dy = o do and 

[$erf(~u)---exp(-f.iz) 1 
o7P 
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the stream function $ in the transition zone, $ T Z ,  can be obtained by integrating 76 
with respect to 7 :  

1 
4x -- (Qz  - Ql) [erf ( i x )  - cos Berf (&T)]. (A 23) 

It is seen that for fixed 7 

(A 24a) 

and 

This is consistent with (41 b) and (42 b). The radial component of the velocity V can be 
obtained, if desired, by differentiating $*'. 
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